
The Limitations of Genetic Algorithms in Software 

Testing

Sultan H. Aljahdali 

College of Computers and Information Sys 

Taif University, Taif, Saudi Arabia 
aljahdali@tu.edu.sa 

Ahmed S. Ghiduk 

College of Computers and Information Sys 

Taif University, Taif, Saudi Arabia 
asaghiduk@tu.edu.sa  

Mohammed El-Telbany 

College of Computers and Information Sys 

Taif University, Taif, Saudi Arabia 
telbany@tu.edu.sa

 
Abstract—Software test-data generation is the process of 

identifying a set of data, which satisfies a given testing criterion. 

For solving this difficult problem there were a lot of research 

works, which have been done in the past. The most commonly 

encountered are random test-data generation, symbolic test-data 

generation, dynamic test-data generation, and recently, test-data 

generation based on genetic algorithms. This paper gives a survey 

of the majority of software test-data generation techniques based 

on genetic algorithms. It compares and classifies the surveyed 

techniques according to the genetic algorithms features and 

parameters. Also, this paper shows and classifies the limitations 
of these techniques. 
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I.  INTRODUCTION 

Software testing is a main method for improving the quality 
and increasing the reliability of software. It is a kind of 
complex, labor-intensive, and time expensive work; it 
consumes for approximately 50% of the cost of a software 
system development. Increasing the degree of automation and 
the efficiency of software testing certainly can drop down the 
cost of software design, reduce the time period of software 
development, and increase the quality of software significantly. 
The critical point of the problem involved in the automation of 
software testing is the automation of software test-data 
generation. test-data generation in software testing is the 
process of identifying a set of program input data, which 
satisfies a given testing criterion. A test-data generation 
technique must be accompanied by an application of a test data 
adequacy criterion, which is a predicate that determines 
whether the testing process is finished. There are many test-
data generation techniques such as random, symbolic, dynamic, 
and genetic algorithms test-data generation techniques and 
several test data adequacy criteria such as control flow and data 
flow based criteria. This paper gives a survey of the majority of 
software test-data generation techniques based on genetic 
algorithms. It attempts to compare and classifies the surveyed 
techniques according to the genetic algorithms features and 
parameters. Also, this paper shows and classifies the 
limitations of these techniques. 

This paper is organized as follows: Section II gives a 
background to genetic algorithms and describes their technique 
to generate test data. Section III gives a review of the related 
test-data generation techniques, especially techniques based on 
genetic algorithms. Section IV presents a comparison between 
the surveyed test-data generation techniques based on genetic 

algorithms. Section V presents and classifies the limitations of 
these techniques. Section VI presents the conclusions and 
future work. 

II. GENETIC ALGORITHMS 

Genetic algorithms (GAs) are machine learning and 
optimization schemes, much like neural networks. However, 
genetic algorithms do not appear to suffer from local minima as 
badly as neural networks do. Genetic algorithms are based on 
the model of evolution, in which a population evolves towards 
overall fitness, even though individuals perish. Evolution 
dictates that superior individuals have a better chance of 
reproducing than inferior individuals, and thus are more likely 
to pass their superior traits on to the next generation. This 
“survival of the fittest” criterion was first converted to an 
optimization algorithm by Holland in 1975, and is today a 
major optimization technique for complex, nonlinear problems. 
In a genetic algorithm, each individual of a population is one 
possible solution to an optimization problem, encoded as a 
binary string called a chromosome. A group of these 
individuals will be generated, and will compete for the right to 
reproduce or even be carried over into the next generation of 
the population. Competition consists of applying a fitness 
function to every individual in the population; the individuals 
with the best result are the fittest. The next generation will then 
be constructed by carrying over a few of the best individuals, 
reproduction, and mutation. Reproduction is carried out by a 
“crossover” operation, similar to what happens in an animal 
embryo. Two chromosomes exchange portions of their code, 
thus forming a pair of new individuals. In the simplest form of 
crossover, a crossover point on the two chromosomes is 
selected at random, and the chromosomes exchange all data 
after that point, while keeping their own data up to that point. 
In order to introduce additional variation in the population, a 
mutation operator will randomly change a bit or bits in some 
chromosome(s). Usually, the mutation rate is kept low to 
permit good solutions to remain stable. The two most critical 
elements of a genetic algorithm are the way solutions are 
represented, and the fitness function, both of which are 
problem-dependent. The coding for a solution must be 
designed to represent a possibly complicated idea or sequence 
of steps. The fitness function must not only interpret the 
encoding of solutions, but also must establish a ranking of 
different solutions. The fitness function is what will drive the 
entire population of solutions towards a globally best. Figure 1 
illustrates the basic steps in the canonical genetic algorithms. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using genetic algorithms in test data generation for 
software testing is the process of identifying a set of program 
input data, which satisfies a given testing criterion. In 
translating the concepts of genetic algorithms to the problem of 
test-data generation we perform the following tasks: 

1. First of all we consider the population to be a set of test 

data. 

2. Find the set of test data that represents the initial 

population. This set is randomly generated according to 

the format and type of data used by the program under 

test. 

3. Determining the fitness of each individual which is based 

on a fitness function that is problem-dependent. 

4. Select two individuals that will be mated to contribute to 

the next generation. 

5. Apply the crossover and mutation processes. 
6. The above algorithm will iterate until the population has 

evolved to form a solution to the problem (satisfies a 

given testing criterion), or until a termination condition is 

satisfied. 

III. THE RELATED WORK 

One of the major difficulties in software testing is the 
automatic generation of test data that satisfy a given adequacy 
criterion. To solve this difficult problem there were a lot of 
research works, which have been done in the past. Perhaps the 
most commonly encountered are random test-data generation, 
symbolic (or path-oriented) test-data generation, dynamic test-
data generation, and recently, test-data generation based on 
genetic algorithms (GAs). 

Recently different techniques have been proposed which 
are based on genetic algorithms (GAs) to generate test data. 
McMinn [15] and Mantere [16] survey some of the work 
undertaken in this field. Xanthakis et al. in [17] is presented the 
first work applying genetic algorithms to generate test data. In 
this work GAs are employed to generate test data for structures 
not covered by random search. A path is chosen by the user, 
and the relevant branch predicates are extracted from the 
program. The GA is then used to find input data that satisfies 
all branch predicates at once, with the fitness function 
summing branch distance values. Pei et. al. [18] presented a 
new approach focuses on pathwise test-data generation. Where 
the basic operations of pathwise software testing consist of 
there steps: program control flow graph construction, path 
selection, and test-data generation and dynamic program 
execution. This approach manually selects the set of paths 
limited to 2 loops. The overall suitability by the chromosome, 
that is the matching degree between the path of practical 
execution and the ideal required path they set, is termed its 
fitness. The value of fitness function of a chromosome reflects 
the path of the program executing on the input values of all 
variables represented by the chromosome how good it complies 
with the user selected path. Watkins [19] attempted to obtain 
full path coverage for programs. The fitness function penalizes 
individuals that follow already covered paths, by assigning a 
value that is the inverse of the number of times the path has 
already been executed during the search. The direction of the 
search, therefore, is under constant adaptation. However, the 
penalization of covered paths, in itself, provides little guidance 
to the discovery of new, previously unfound paths. The results 
show that in comparison with random testing, the GAs 
approach required an order of magnitude fewer tests to achieve 
path coverage for two experimental programs. However, both 
of these programs are of a simple nature, containing no loops. 
Furthermore, the input domains were artificially restricted for 
the search. Roper et. al. [20] described a system developed to 
explore the use of GAs to generate test data to automatically 
satisfy branch coverage. A system has been developed to 
support this process. It takes the C program to be tested and 
instruments it with probes to provide feedback on the coverage 
achieved. The system creates an initial population of random 
data based on a description of the input data then performs an 
iterative search, which involves running this data and 
measuring its coverage (and hence, fitness). A sample of this 
population is selected (depending on the fitness value) to go 
forward to the new population and proportion of this new 
population is then subjected to mutation and crossover. The 
process is then applied again until a maximum level of fitness 
is reached by the test data. Jones et. al. [21] developed a GA 
for test-data generation for branch coverage. They use a control 
flow graph that represents one, two, and three iterations of each 
loop; because their representation unrolls each loop a specified 
number of times, their control flow graphs are acyclic. A 
program is instrumented so that as it executes with a test case, 
it records the branches it reaches and fitness of that test case. 
The fitness function uses the branch value, along with the value 
of the branch condition, to determine the fitness of the test 
case. The authors implemented the approach and preformed 
experiments with number of small programs. Sthamer [22] 
studied the use of GA as a test data generator for structural 

Figure 1.   The canonical GA algorithm. 



white box testing: branch, boundary, loop testing, and mutation 
testing. His example programs are small programs written in 
Ada including triangle classification, linear search, remainder 
calculation, and direct sort. Sthamer‟s fitness function is based 
on the predicates of the software under test. He observed that 
GAs show good results in searching the input domain for the 
required test sets. Weichselbaum [23] measured the coverage 
acquired by a test datum on the basis of the control flow graph. 
Weichselbaum concentrated on statement, branch, and 
condition testing. Pargas et. al. [24] presented GenerateData, an 
algorithm for automatic test-data generation for a given 
program. GenerateData uses a genetic algorithm, directed by 
the control-dependence graph of the program, to search for test 
data to satisfy test requirements. The test-data generation 
technique was implemented in a tool called TGen in which 
parallel processing was used to improve the performance of the 
search. The prototype, TGen, is implemented for statement and 
branch coverage. The algorithm evaluates test data by 
executing the program with the test data as input, and recording 
the predicates in the program that execute with that test data. 
This list of predicates is compared with the set of predicates 
found on the control-dependence predicate paths for the node 
representing the current test requirement that is the target of the 
search. A test data‟s fitness evaluation depends on the number 
of predicates that it has in common with the predicates on a 
control-dependence predicate path of the target: a solution that 
covers the greatest number of predicates is given the highest 
fitness evaluation. To experiment with TGen, a random test-
data generator, called Random, was also implemented. Both 
TGen and Random were used to experiment with the 
generation of test data for statement and branch coverage of six 
programs. This approach clearly outperformed the random 
method for three of the six test programs, for the other three 
programs both methods find the optimal solution in the initial 
population. The work of Tracey [25] deals with automatic test-
data generation for testing safety-critical systems. He uses 
simulated annealing and genetic algorithms, but also random 
search and hill climbing as the optimization methods. Bueno 
and Jino presented in [26-27] a new technique for path oriented 
test data generation for programs and identification of a path's 
likely unfeasibility in structural software testing. They propose 
that monitoring the progress of the GA search could identify an 
infeasible path. Their approach combines earlier works by 
other authors and introduces a new fitness function using 
control and data flow information to guide the search. They use 
the so-called „„path similarity metric‟‟ as their fitness function. 
The authors present a new technique for choosing the initial 
search point using “past information” to improve the 
performance of test-data generation. Results are presented from 
an empirical evaluation done to assess the cost and the 
effectiveness of test-data generation using the proposed 
technique. Infinite loops are avoided by making the program 
execution halt if the number of traversed nodes is greater than a 
specified limit. Results with their six small test programs were 
promising. In the work of Wegener et. al. [28-29], development 
a test environment to support all common control-flow and 
data-flow oriented test methods. Also, several new structure-
oriented fitness functions were introduced for most coverage 
types but their tool environment applied for automatic 
generation of test data for statement and branch testing. They 

introduced the idea of an approximation level, indicates how 
many branching condition nodes still require execution in the 
desired way to achieve the required partial aim. Lin and Yeh 
[30] have also studied automatic test-data generation by a GA 
for a chosen subpath. Their method uses a so-called 
„„normalized extended Hamming distance‟‟ to guide the 
optimization process and to test the optimality of the candidate 
solutions. This fitness function, called SIMILARITY, defines 
how similar the traversed path is to the target path, is used to 
choose the surviving test cases. Optimality here means that the 
test case (i.e. a particular input) forces the program to follow 
the given path of program statements when executed. They 
claim that a GA is able to significantly reduce the time required 
for automatic path testing. Michael et. al [31] discussed the use 
of GAs for automatic software test-data generation. His work 
describes the implementation of GAs based system 
(GADGET), which attempted to generate test cases that satisfy 
condition-decision coverage criterion. This system (GADGET) 
was designed to work on programs written in C and C++. But 
this system is limited to programs whose inputs are scalar 
types. It can‟t intelligently handle Boolean variables or 
enumerated types. Michael et al. examined the effectiveness of 
this approach on a number of programs one of, which is 
significantly larger than those for which results have previously 
been reported in the literature. Also they examine the effect of 
program complexity on the test-data generation problem by 
executing this system on a number of synthetic programs that 
have varying complexities. Berndt et al. [32] distinguishes 
between absolute and relative fitness functions, that is used to 
organize past research and characterize this project‟s reliance 
on a relative or changing fitness function. In particular, the 
genetic algorithm includes a fossil record that records past 
organisms, allowing any current fitness calculations to be 
influenced by past generations. Three factors are developed for 
the fitness function: novelty, proximity, and severity. The 
interplay of these factors produces fairly complex search 
behaviors in the context of an example triangle program used 
in past software testing research. Lastly, several techniques for 
fossil record visualization are developed and used to analyze 
different fitness function weights and resulting search 
behaviors. 

IV. GENETIC-BASED TEST-DATA GENERATION 

TECHNIQUES: A COMPARISON 

This section present a comparison among the genetic 
algorithms based test-data generation techniques through many 
dimensions such as coverage criterion, fitness function, 
chromosome representation, the base of initial population 
selection, type and rate of crossover and mutation operators, 
population size, and the selection principle of the survival 
individuals. As shown in Table 1 for the first dimension, 
coverage criterion, Xanthakis, Pei, Watkins, Lin, and Bueno 
techniques are employed to generate test data for a selected set 
of paths of the program; each technique takes one path (not yet 
covered) at a time in the given sequence. Whereas, in the work 
of Xanthakis the genetic algorithm is used to find input data 
that satisfies all branch predicates of a chosen path. Pei‟s 
approach selects the set of paths of the program manually and 
selects the path limited to 2 loops, but Watkins attempts to 
obtain full path coverage for programs of a simple nature and 



containing no loops. Bueno‟s technique can be applied to the 
generation of test data for sub-paths from the entry node to 
some goal node different from the exit node. 

TABLE I.   COMPARISON ACCORDING TO COVERAGE CRITERION AND 

FITNESS FUNCTION 

 Coverage Criterion Fitness Function 

Xanthakis Path 
The branch distance 

values. 

Pei Path (limited to 2 loops) 
Fitness = C-

[10*n+5*n(n-1)/2] 

Watkins Path 
The function 

penalizes 

Roper Branch 
Percentage of 

coverage achieved 

Jones Branch (with 0,1,2, and 3 loops) 
Hamming distance or 

reciprocal 

Pargas Statement and branch Common predicates 

Lin Path Similarity 

Michael Branch (Condition-decision) Predicate function 

Bueno Path FT = NC - EP / MEP 

 

Roper, Jones, Pargas, and Michael techniques attempt to 
achieve a desired level of branch coverage. Whereas, Jones 
technique attempts to ensure that all branches in the software 
were exercised but the loops are controlling to zero, one, two, 
and three loops. Pargas technique uses Control Dependence 
Graph thus the paths are acyclic and Michael‟s technique uses 
condition-decision coverage. 

For the second dimension, fitness function, Xanthakis‟s 
fitness function is the sum of the branch predicates on the path, 
where a branch predicate has the form: E1 op E2 where E1 and 
E2 are arithmetic expressions and op is one of 

  ,,,,, . Then, this branch predicate can be 

transformed to the equivalent function as shown in Table 2. Pei 
uses a most simple fitness function 

  21510  NNNC , where C is a big number, 

and N is a matching number between practical sub-paths and 
ideal required sub-paths. The third term is a scaling factor. 
Watkins‟s fitness function penalizes individuals that follow 
already covered paths, by assigning a value that is the inverse 
of the number of times the path has already been executed 
during the search. Roper‟s fitness function is the coverage of 
the program which achieved, i.e., the number of covered 
branches to the total number of branches. Jones considers two 
fitness functions: the Hamming distance function and a simple 
reciprocal of the difference between two predicate values. The 
former may be applied in general, while the latter applies only 
to predicates in which numerical values are compared. Pargas‟s 
fitness function is the number of predicates that it has in 
common with the predicates on a control-dependence predicate 
path of the target. Lin‟s technique uses a so-called „„normalized 
extended Hamming distance‟‟ to guide the optimization 
process and to test the optimality of the candidate solutions. 
This fitness function, called SIMILARITY. Michael uses the 
fitness function shown in Table 3. If the program‟s execution 
fails to reach the desired location then the fitness function takes 
its worst possible value. 

TABLE II.   THE BRANCH FUNCTION 

Branch Predicate Branch function When 

E1 > E2 
F = 

E1 - E2 E1 - E2 > 0 

E1  E2 0 E1 - E2 < 0 

E1 < E2 
F = 

E2 – E1 E2 – E1 > 0 

E1  E2 0 E2 – E1 < 0 

E1 = E2 
F = 

Abs(E1 - E2) Abs(E1 - E2) > 0 

E1  E2 0 Abs(E1 - E2) < 0 

TABLE III.   THE MICHAEL‟S FITNESS FUNCTION 

Decision type Example Fitness function 

Inequality If(c>= d) d-c, if d c, 0, otherwise 

Equality If(c= = d) cd   

Boolean value If (c) 1000, if c=false 0, otherwise 

 

Finally Bueno‟s technique uses the fitness 

function MEPEPNCFT  , where NC path similarity, 

EP absolute value of the path predicate (branch) function, and 
MEP is the maximum predicate function value among the 
candidate. Table 4 shows the comparison between some of the 
surveyed techniques according to genetic algorithm 
dimensions. From this comparison we note that these 
techniques use one of four chromosome representation binary 
string, gray code, character string, and list of input data. All 
techniques select the initial population randomly except in 
Bueno‟s technique the input data sets whose executed paths are 
similar to the desired one are recovered to be the initial 
population. All techniques use the single point crossover 
operator with rate from 0.60 to 0.90 except Jones uses uniform 
crossover with rate equal to 0.50. Also, Jones uses the 
reciprocal and weighted mutation but the others use the simple 
mutation with rate from 0.001 to 0.10. Each technique has a 
different population size. Many approaches are used to select 
the survival individuals such as high fitness, high average, high 
fitness in a selected subpopulation, hybrid between random and 
high fitness. 

V. THE LIMITATIONS OF THESE TECHNIQUES 

The new features of GAs make the existing test-data 
generation techniques based on them capable to find the nearly 
global optimum. However, these techniques have the following 
limitations: 

A. Using Control Flow Coverage 

Previous researches concentrated only on using control 
flow coverage criteria (e.g. statement, branch, path and 
condition-decision) and developing an appropriate fitness 
function definition for each criterion. But really, no one uses a 
data flow coverage criterion and there is no experiments do to 
discover the problems with these type of coverage criteria. 
However, higher levels of coverage may further discriminate 
among different test-data generation techniques. It would be 
interesting to apply these techniques to multiple condition 
coverage as well as data-flow coverage criteria. 

 



TABLE IV.   COMPARISON ACCORDING TO GENETIC ALGORITHM PARAMETERS 

 

Crossover operator Mutation operator 
 

Chromosome 

 Representation 

Initial Population 

Selection Type Rate Type Rate 

Population 

Size 
Selection 

Pei Binary string Randomly Single point 0.60-0.70 
Simple 

Mutation 
0.001 

Program‟s size 

or paths 
High fitness 

Roper Character string Randomly Single point 
Input by the 

user 

Simple 

Mutation 

Input by the 

user 

Input by 

the user 

High fitness 

or average 

Jones 
Binary-plus-sign  

& gray code 
Randomly 

Uniform 

crossover 
0.5 

Reciprocal 

&Weighted 

Reciprocal 

&five least 
45 Hybrid 

Pargas List of input data Randomly Single point 0.90 
Simple 

Mutation 
0.10 100 High fitness 

Michael Binary string Randomly Single point 0.50 
Simple 

Mutation 
0.001 24 or  100 High fitness 

Bueno Binary string Data of similar path Single point 0.80 
Simple 

Mutation 
0.03 Around 80 fi  / favg 

B. Using Simple Types of Genetic Operators 

In spite of, there are many types of genetic operators and 
overlooking of, genetic operators which can specialize for test-
data generation. Previous techniques concentrated only on 
using simple types of genetic operators (crossover and 
mutation) which sometimes destroy the input‟s data types (e.g. 
a simple mutation can change a string into an unprintable 
character). 

C. Not Considered Some Data Types and Multiple 

Procedures 

A structure is a collection of one or more variables possibly 
of different types grouped together under a single name for 
convenient handling. A pointer is a variable that contains the 
address of another variable actually it represents two variables: 
pointer itself and the variable pointed at. The problem here is 
how to solve the test-data generation problem using a GA in 
the presence of pointers to structures. The main problem for the 
search procedure using GA is to look for a suitable 
representation or coding for the structures and to design some 
recombination operation corresponding to the new 
representation. 

D. Manually Selecting the Set of Paths to Be Covered 

Path selection is the use of heuristics to choose an 
execution path that simplifies test-data generation. Although 
path selection is not vital in most of previous test-data 
generation techniques, it may still be the case that some 
execution paths are better than others for satisfying a particular 
test requirement. If static or dynamic analysis can provide clues 
about which paths are best, it will not be difficult to bias a 
genetic search algorithm toward solutions using those paths. 

E. Randomly Selecting the Initial Population 

All previous test-data generation techniques select the 
initial population randomly. These techniques can be improved 
by basing the initial population on a partial solution (e.g. a set 
of functional tests) rather than a random population, and use 
the system to fill in the gaps which the functional tests have 
missed. Also, the initial population can construct by a simple 

technique. These improvements can drive the technique to 
obtain the optimal solution quickly. 

F. Using Solid Fitness Functions 

When genetic search generates an input that fails to satisfy 
a particular test requirement that it is currently trying to satisfy, 
that input is simply given a low fitness value. However, there is 
at least one input that reaches the  test requirement because of 
the way the algorithm is defined. If the technique assigns 
higher fitnesses to inputs that are closer to satisfy the test 
requirement, it might be possible to breed more inputs that 
actually reach it. 

1) Control Dependences Related Problems for Fitness 

Functions 
The fitness function that is used to optimize a test datum to 

execute a certain target node, as described in [24], takes control 
dependencies into account. This fitness function faces a 
problem to find an input to traverse a target node within loops 
[33]. This results in poor search performance. Jones et al. [21] 
avoid this problem by unrolling the loop in the control flow 
graph for the fitness evaluation only. The approach taken by 
Baresel et al. [33] is add dependencies of one loop iteration to 
the fitness function. Whilst monitoring the execution of the test 
object, one can observe this information on all iterations and 
calculate fitness from it. In order to circumvent this problem, 
Tracey [25] examines the branch distance during each iteration 
of the loop and uses the minimum branch distance obtained for 
the purposes of computing the final fitness value. A further 
problem is the assignment of approximation levels for some 
classes of program with unstructured control flow. Baresel et 
al. [33] present an example for this problem. Two plausible 
solutions to this problem include optimistic and pessimistic 
approximation level allocation strategies. In an optimistic 
strategy, a control dependent branching node is allocated its 
approximation level on the basis of the shortest control 
dependent path from itself to the target node. In a pessimistic 
strategy, a branching node is allocated its approximation level 
on the basis of the longest control dependent path to the target 
node. Both optimistic and pessimistic schemes were put to the 
test in initial experiments by Baresel et al. [33]. Whilst they 
show that the different schemes have different effects on the 
progress of the search, they were unable to conclude from the 



experiments which strategy works best in general. Thus, this 
problem is still open to question. 

2) Branch-Distance-Related Problems for Fitness 

Functions 
Although global search techniques are more robust than 

local searches in fitness function landscapes containing local 
optima and plateaus, they will still struggle in hostile search 
landscapes containing large plateaus or several local optima. In 
particular, plateaus can be induced on the search space through 
the use of “flag” variables in branch predicates. When flag 
variables are involved in branch predicates, the resulting fitness 
function landscape consists of two plateaus - one for the true 
value and one for the false value. In such situations, the 
evolutionary search performs no better than a random search. 
Bottaci [34] proposes a solution for a special case of flag 
problems, where the value of the flag is determined by a 
predicate. In this work it is suggested that the predicate used 
for the distance calculation is substituted by the predicate used 
in assigning the flag value, which provides more guidance to 
the required test data. However, flags are more commonly 
assigned constant true or false values. Harman et al. [35] 
suggest the use of a program transformation to remove flag 
variables from branch predicates, replacing them with the 
expression that led to their determination. In the transformed 
version of the program, the branch predicate is flag-free, and 
consequently plateaux induced by the flag are also removed. 
Note that although the flag is removed from the branch 
predicate, it otherwise remains present in the program, in case 
it has a future purpose in a later statement. A disadvantage of 
the approach is that it can not yet transform programs where 
flags are involved in loops. The approach of Baresel and 
Sthamer [36] is to identify a sequence of nodes to be executed 
prior to the branch predicate containing the flag. The sequence 
of nodes to be executed is performed via data- flow analysis of 
the flags involved. 

A further problem can occur with nested branch predicates 
[33]. Once input data is found for one or more of the 
predicates, the chances of finding input data that also fits 
subsequent predicates decreases. This is because a solution for 
subsequent conditions must be found without violating any of 
the earlier conditions. This leads to poor search performance. 
Ideally, all of the conditions should be evaluated at once. Such 
a situation could be established through the use of data 
dependency analysis [33]. A similar problem occurs with the 
use of short circuit evaluation of atomic conditions with branch 
predicates using operators such as && and || in C. In such 
situations the evaluation of the overall predicate breaks off 
early if the end result has already been determined. Therefore, 
during the process of searching for test data, the individual 
conditions have to be attempted one after the other. Again, it 
would be preferable to evaluate all of the conditions at once. In 
this situation, care needs to be taken when side effects appear 
in any of the conditions. A solution here might be to apply a 
side-effect removal program transformation [37-38] first. 
Alternatively, variables values could be saved into temporary 
variables inserted immediately before the branching statement, 
and restored after the side-effect if the condition would not 
normally have been evaluated. 

VI. CONCLUSIONS AND FUTURE WORK 

The new features of GAs make the test-data generation 
process easily and find the nearly global optimum. We have 
described in section 6 some limitation of the test-data 
generation techniques based on genetic algorithms such as they 
concentrated only on: using control flow coverage, using 
simple types of genetic operators, not considered test-data 
generation in the presence of pointers, dynamic data structures, 
and multiple procedures, manually selected the set of paths to 
be covered, randomly selected the initial population, and using 
solid fitness functions. Furthermore, there are other problems 
as flag and enumeration variables and unstructured control 
flow. Additional researches are required to overcome these 
problems. 
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