
The Limitations of Genetic Algorithms in Software

Testing

Sultan H. Aljahdali

College of Computers and Information Sys

Taif University, Taif, Saudi Arabia
aljahdali@tu.edu.sa

Ahmed S. Ghiduk

College of Computers and Information Sys

Taif University, Taif, Saudi Arabia
asaghiduk@tu.edu.sa

Mohammed El-Telbany

College of Computers and Information Sys

Taif University, Taif, Saudi Arabia
telbany@tu.edu.sa

Abstract—Software test-data generation is the process of

identifying a set of data, which satisfies a given testing criterion.

For solving this difficult problem there were a lot of research

works, which have been done in the past. The most commonly

encountered are random test-data generation, symbolic test-data

generation, dynamic test-data generation, and recently, test-data

generation based on genetic algorithms. This paper gives a survey

of the majority of software test-data generation techniques based

on genetic algorithms. It compares and classifies the surveyed

techniques according to the genetic algorithms features and

parameters. Also, this paper shows and classifies the limitations
of these techniques.

Keywords-genetic algorithms; software testing

I. INTRODUCTION

Software testing is a main method for improving the quality
and increasing the reliability of software. It is a kind of
complex, labor-intensive, and time expensive work; it
consumes for approximately 50% of the cost of a software
system development. Increasing the degree of automation and
the efficiency of software testing certainly can drop down the
cost of software design, reduce the time period of software
development, and increase the quality of software significantly.
The critical point of the problem involved in the automation of
software testing is the automation of software test-data
generation. test-data generation in software testing is the
process of identifying a set of program input data, which
satisfies a given testing criterion. A test-data generation
technique must be accompanied by an application of a test data
adequacy criterion, which is a predicate that determines
whether the testing process is finished. There are many test-
data generation techniques such as random, symbolic, dynamic,
and genetic algorithms test-data generation techniques and
several test data adequacy criteria such as control flow and data
flow based criteria. This paper gives a survey of the majority of
software test-data generation techniques based on genetic
algorithms. It attempts to compare and classifies the surveyed
techniques according to the genetic algorithms features and
parameters. Also, this paper shows and classifies the
limitations of these techniques.

This paper is organized as follows: Section II gives a
background to genetic algorithms and describes their technique
to generate test data. Section III gives a review of the related
test-data generation techniques, especially techniques based on
genetic algorithms. Section IV presents a comparison between
the surveyed test-data generation techniques based on genetic

algorithms. Section V presents and classifies the limitations of
these techniques. Section VI presents the conclusions and
future work.

II. GENETIC ALGORITHMS

Genetic algorithms (GAs) are machine learning and
optimization schemes, much like neural networks. However,
genetic algorithms do not appear to suffer from local minima as
badly as neural networks do. Genetic algorithms are based on
the model of evolution, in which a population evolves towards
overall fitness, even though individuals perish. Evolution
dictates that superior individuals have a better chance of
reproducing than inferior individuals, and thus are more likely
to pass their superior traits on to the next generation. This
“survival of the fittest” criterion was first converted to an
optimization algorithm by Holland in 1975, and is today a
major optimization technique for complex, nonlinear problems.
In a genetic algorithm, each individual of a population is one
possible solution to an optimization problem, encoded as a
binary string called a chromosome. A group of these
individuals will be generated, and will compete for the right to
reproduce or even be carried over into the next generation of
the population. Competition consists of applying a fitness
function to every individual in the population; the individuals
with the best result are the fittest. The next generation will then
be constructed by carrying over a few of the best individuals,
reproduction, and mutation. Reproduction is carried out by a
“crossover” operation, similar to what happens in an animal
embryo. Two chromosomes exchange portions of their code,
thus forming a pair of new individuals. In the simplest form of
crossover, a crossover point on the two chromosomes is
selected at random, and the chromosomes exchange all data
after that point, while keeping their own data up to that point.
In order to introduce additional variation in the population, a
mutation operator will randomly change a bit or bits in some
chromosome(s). Usually, the mutation rate is kept low to
permit good solutions to remain stable. The two most critical
elements of a genetic algorithm are the way solutions are
represented, and the fitness function, both of which are
problem-dependent. The coding for a solution must be
designed to represent a possibly complicated idea or sequence
of steps. The fitness function must not only interpret the
encoding of solutions, but also must establish a ranking of
different solutions. The fitness function is what will drive the
entire population of solutions towards a globally best. Figure 1
illustrates the basic steps in the canonical genetic algorithms.

Using genetic algorithms in test data generation for
software testing is the process of identifying a set of program
input data, which satisfies a given testing criterion. In
translating the concepts of genetic algorithms to the problem of
test-data generation we perform the following tasks:

1. First of all we consider the population to be a set of test

data.

2. Find the set of test data that represents the initial

population. This set is randomly generated according to

the format and type of data used by the program under

test.

3. Determining the fitness of each individual which is based

on a fitness function that is problem-dependent.

4. Select two individuals that will be mated to contribute to

the next generation.

5. Apply the crossover and mutation processes.
6. The above algorithm will iterate until the population has

evolved to form a solution to the problem (satisfies a

given testing criterion), or until a termination condition is

satisfied.

III. THE RELATED WORK

One of the major difficulties in software testing is the
automatic generation of test data that satisfy a given adequacy
criterion. To solve this difficult problem there were a lot of
research works, which have been done in the past. Perhaps the
most commonly encountered are random test-data generation,
symbolic (or path-oriented) test-data generation, dynamic test-
data generation, and recently, test-data generation based on
genetic algorithms (GAs).

Recently different techniques have been proposed which
are based on genetic algorithms (GAs) to generate test data.
McMinn [15] and Mantere [16] survey some of the work
undertaken in this field. Xanthakis et al. in [17] is presented the
first work applying genetic algorithms to generate test data. In
this work GAs are employed to generate test data for structures
not covered by random search. A path is chosen by the user,
and the relevant branch predicates are extracted from the
program. The GA is then used to find input data that satisfies
all branch predicates at once, with the fitness function
summing branch distance values. Pei et. al. [18] presented a
new approach focuses on pathwise test-data generation. Where
the basic operations of pathwise software testing consist of
there steps: program control flow graph construction, path
selection, and test-data generation and dynamic program
execution. This approach manually selects the set of paths
limited to 2 loops. The overall suitability by the chromosome,
that is the matching degree between the path of practical
execution and the ideal required path they set, is termed its
fitness. The value of fitness function of a chromosome reflects
the path of the program executing on the input values of all
variables represented by the chromosome how good it complies
with the user selected path. Watkins [19] attempted to obtain
full path coverage for programs. The fitness function penalizes
individuals that follow already covered paths, by assigning a
value that is the inverse of the number of times the path has
already been executed during the search. The direction of the
search, therefore, is under constant adaptation. However, the
penalization of covered paths, in itself, provides little guidance
to the discovery of new, previously unfound paths. The results
show that in comparison with random testing, the GAs
approach required an order of magnitude fewer tests to achieve
path coverage for two experimental programs. However, both
of these programs are of a simple nature, containing no loops.
Furthermore, the input domains were artificially restricted for
the search. Roper et. al. [20] described a system developed to
explore the use of GAs to generate test data to automatically
satisfy branch coverage. A system has been developed to
support this process. It takes the C program to be tested and
instruments it with probes to provide feedback on the coverage
achieved. The system creates an initial population of random
data based on a description of the input data then performs an
iterative search, which involves running this data and
measuring its coverage (and hence, fitness). A sample of this
population is selected (depending on the fitness value) to go
forward to the new population and proportion of this new
population is then subjected to mutation and crossover. The
process is then applied again until a maximum level of fitness
is reached by the test data. Jones et. al. [21] developed a GA
for test-data generation for branch coverage. They use a control
flow graph that represents one, two, and three iterations of each
loop; because their representation unrolls each loop a specified
number of times, their control flow graphs are acyclic. A
program is instrumented so that as it executes with a test case,
it records the branches it reaches and fitness of that test case.
The fitness function uses the branch value, along with the value
of the branch condition, to determine the fitness of the test
case. The authors implemented the approach and preformed
experiments with number of small programs. Sthamer [22]
studied the use of GA as a test data generator for structural

Figure 1. The canonical GA algorithm.

white box testing: branch, boundary, loop testing, and mutation
testing. His example programs are small programs written in
Ada including triangle classification, linear search, remainder
calculation, and direct sort. Sthamer‟s fitness function is based
on the predicates of the software under test. He observed that
GAs show good results in searching the input domain for the
required test sets. Weichselbaum [23] measured the coverage
acquired by a test datum on the basis of the control flow graph.
Weichselbaum concentrated on statement, branch, and
condition testing. Pargas et. al. [24] presented GenerateData, an
algorithm for automatic test-data generation for a given
program. GenerateData uses a genetic algorithm, directed by
the control-dependence graph of the program, to search for test
data to satisfy test requirements. The test-data generation
technique was implemented in a tool called TGen in which
parallel processing was used to improve the performance of the
search. The prototype, TGen, is implemented for statement and
branch coverage. The algorithm evaluates test data by
executing the program with the test data as input, and recording
the predicates in the program that execute with that test data.
This list of predicates is compared with the set of predicates
found on the control-dependence predicate paths for the node
representing the current test requirement that is the target of the
search. A test data‟s fitness evaluation depends on the number
of predicates that it has in common with the predicates on a
control-dependence predicate path of the target: a solution that
covers the greatest number of predicates is given the highest
fitness evaluation. To experiment with TGen, a random test-
data generator, called Random, was also implemented. Both
TGen and Random were used to experiment with the
generation of test data for statement and branch coverage of six
programs. This approach clearly outperformed the random
method for three of the six test programs, for the other three
programs both methods find the optimal solution in the initial
population. The work of Tracey [25] deals with automatic test-
data generation for testing safety-critical systems. He uses
simulated annealing and genetic algorithms, but also random
search and hill climbing as the optimization methods. Bueno
and Jino presented in [26-27] a new technique for path oriented
test data generation for programs and identification of a path's
likely unfeasibility in structural software testing. They propose
that monitoring the progress of the GA search could identify an
infeasible path. Their approach combines earlier works by
other authors and introduces a new fitness function using
control and data flow information to guide the search. They use
the so-called „„path similarity metric‟‟ as their fitness function.
The authors present a new technique for choosing the initial
search point using “past information” to improve the
performance of test-data generation. Results are presented from
an empirical evaluation done to assess the cost and the
effectiveness of test-data generation using the proposed
technique. Infinite loops are avoided by making the program
execution halt if the number of traversed nodes is greater than a
specified limit. Results with their six small test programs were
promising. In the work of Wegener et. al. [28-29], development
a test environment to support all common control-flow and
data-flow oriented test methods. Also, several new structure-
oriented fitness functions were introduced for most coverage
types but their tool environment applied for automatic
generation of test data for statement and branch testing. They

introduced the idea of an approximation level, indicates how
many branching condition nodes still require execution in the
desired way to achieve the required partial aim. Lin and Yeh
[30] have also studied automatic test-data generation by a GA
for a chosen subpath. Their method uses a so-called
„„normalized extended Hamming distance‟‟ to guide the
optimization process and to test the optimality of the candidate
solutions. This fitness function, called SIMILARITY, defines
how similar the traversed path is to the target path, is used to
choose the surviving test cases. Optimality here means that the
test case (i.e. a particular input) forces the program to follow
the given path of program statements when executed. They
claim that a GA is able to significantly reduce the time required
for automatic path testing. Michael et. al [31] discussed the use
of GAs for automatic software test-data generation. His work
describes the implementation of GAs based system
(GADGET), which attempted to generate test cases that satisfy
condition-decision coverage criterion. This system (GADGET)
was designed to work on programs written in C and C++. But
this system is limited to programs whose inputs are scalar
types. It can‟t intelligently handle Boolean variables or
enumerated types. Michael et al. examined the effectiveness of
this approach on a number of programs one of, which is
significantly larger than those for which results have previously
been reported in the literature. Also they examine the effect of
program complexity on the test-data generation problem by
executing this system on a number of synthetic programs that
have varying complexities. Berndt et al. [32] distinguishes
between absolute and relative fitness functions, that is used to
organize past research and characterize this project‟s reliance
on a relative or changing fitness function. In particular, the
genetic algorithm includes a fossil record that records past
organisms, allowing any current fitness calculations to be
influenced by past generations. Three factors are developed for
the fitness function: novelty, proximity, and severity. The
interplay of these factors produces fairly complex search
behaviors in the context of an example triangle program used
in past software testing research. Lastly, several techniques for
fossil record visualization are developed and used to analyze
different fitness function weights and resulting search
behaviors.

IV. GENETIC-BASED TEST-DATA GENERATION

TECHNIQUES: A COMPARISON

This section present a comparison among the genetic
algorithms based test-data generation techniques through many
dimensions such as coverage criterion, fitness function,
chromosome representation, the base of initial population
selection, type and rate of crossover and mutation operators,
population size, and the selection principle of the survival
individuals. As shown in Table 1 for the first dimension,
coverage criterion, Xanthakis, Pei, Watkins, Lin, and Bueno
techniques are employed to generate test data for a selected set
of paths of the program; each technique takes one path (not yet
covered) at a time in the given sequence. Whereas, in the work
of Xanthakis the genetic algorithm is used to find input data
that satisfies all branch predicates of a chosen path. Pei‟s
approach selects the set of paths of the program manually and
selects the path limited to 2 loops, but Watkins attempts to
obtain full path coverage for programs of a simple nature and

containing no loops. Bueno‟s technique can be applied to the
generation of test data for sub-paths from the entry node to
some goal node different from the exit node.

TABLE I. COMPARISON ACCORDING TO COVERAGE CRITERION AND

FITNESS FUNCTION

 Coverage Criterion Fitness Function

Xanthakis Path
The branch distance

values.

Pei Path (limited to 2 loops)
Fitness = C-

[10*n+5*n(n-1)/2]

Watkins Path
The function

penalizes

Roper Branch
Percentage of

coverage achieved

Jones Branch (with 0,1,2, and 3 loops)
Hamming distance or

reciprocal

Pargas Statement and branch Common predicates

Lin Path Similarity

Michael Branch (Condition-decision) Predicate function

Bueno Path FT = NC - EP / MEP

Roper, Jones, Pargas, and Michael techniques attempt to
achieve a desired level of branch coverage. Whereas, Jones
technique attempts to ensure that all branches in the software
were exercised but the loops are controlling to zero, one, two,
and three loops. Pargas technique uses Control Dependence
Graph thus the paths are acyclic and Michael‟s technique uses
condition-decision coverage.

For the second dimension, fitness function, Xanthakis‟s
fitness function is the sum of the branch predicates on the path,
where a branch predicate has the form: E1 op E2 where E1 and
E2 are arithmetic expressions and op is one of

  ,,,,, . Then, this branch predicate can be

transformed to the equivalent function as shown in Table 2. Pei
uses a most simple fitness function

  21510  NNNC , where C is a big number,

and N is a matching number between practical sub-paths and
ideal required sub-paths. The third term is a scaling factor.
Watkins‟s fitness function penalizes individuals that follow
already covered paths, by assigning a value that is the inverse
of the number of times the path has already been executed
during the search. Roper‟s fitness function is the coverage of
the program which achieved, i.e., the number of covered
branches to the total number of branches. Jones considers two
fitness functions: the Hamming distance function and a simple
reciprocal of the difference between two predicate values. The
former may be applied in general, while the latter applies only
to predicates in which numerical values are compared. Pargas‟s
fitness function is the number of predicates that it has in
common with the predicates on a control-dependence predicate
path of the target. Lin‟s technique uses a so-called „„normalized
extended Hamming distance‟‟ to guide the optimization
process and to test the optimality of the candidate solutions.
This fitness function, called SIMILARITY. Michael uses the
fitness function shown in Table 3. If the program‟s execution
fails to reach the desired location then the fitness function takes
its worst possible value.

TABLE II. THE BRANCH FUNCTION

Branch Predicate Branch function When

E1 > E2
F =

E1 - E2 E1 - E2 > 0

E1 E2 0 E1 - E2 < 0

E1 < E2
F =

E2 – E1 E2 – E1 > 0

E1 E2 0 E2 – E1 < 0

E1 = E2
F =

Abs(E1 - E2) Abs(E1 - E2) > 0

E1 E2 0 Abs(E1 - E2) < 0

TABLE III. THE MICHAEL‟S FITNESS FUNCTION

Decision type Example Fitness function

Inequality If(c>= d) d-c, if d c, 0, otherwise

Equality If(c= = d) cd 

Boolean value If (c) 1000, if c=false 0, otherwise

Finally Bueno‟s technique uses the fitness

function MEPEPNCFT  , where NC path similarity,

EP absolute value of the path predicate (branch) function, and
MEP is the maximum predicate function value among the
candidate. Table 4 shows the comparison between some of the
surveyed techniques according to genetic algorithm
dimensions. From this comparison we note that these
techniques use one of four chromosome representation binary
string, gray code, character string, and list of input data. All
techniques select the initial population randomly except in
Bueno‟s technique the input data sets whose executed paths are
similar to the desired one are recovered to be the initial
population. All techniques use the single point crossover
operator with rate from 0.60 to 0.90 except Jones uses uniform
crossover with rate equal to 0.50. Also, Jones uses the
reciprocal and weighted mutation but the others use the simple
mutation with rate from 0.001 to 0.10. Each technique has a
different population size. Many approaches are used to select
the survival individuals such as high fitness, high average, high
fitness in a selected subpopulation, hybrid between random and
high fitness.

V. THE LIMITATIONS OF THESE TECHNIQUES

The new features of GAs make the existing test-data
generation techniques based on them capable to find the nearly
global optimum. However, these techniques have the following
limitations:

A. Using Control Flow Coverage

Previous researches concentrated only on using control
flow coverage criteria (e.g. statement, branch, path and
condition-decision) and developing an appropriate fitness
function definition for each criterion. But really, no one uses a
data flow coverage criterion and there is no experiments do to
discover the problems with these type of coverage criteria.
However, higher levels of coverage may further discriminate
among different test-data generation techniques. It would be
interesting to apply these techniques to multiple condition
coverage as well as data-flow coverage criteria.

TABLE IV. COMPARISON ACCORDING TO GENETIC ALGORITHM PARAMETERS

Crossover operator Mutation operator

Chromosome

 Representation

Initial Population

Selection Type Rate Type Rate

Population

Size
Selection

Pei Binary string Randomly Single point 0.60-0.70
Simple

Mutation
0.001

Program‟s size

or paths
High fitness

Roper Character string Randomly Single point
Input by the

user

Simple

Mutation

Input by the

user

Input by

the user

High fitness

or average

Jones
Binary-plus-sign

& gray code
Randomly

Uniform

crossover
0.5

Reciprocal

&Weighted

Reciprocal

&five least
45 Hybrid

Pargas List of input data Randomly Single point 0.90
Simple

Mutation
0.10 100 High fitness

Michael Binary string Randomly Single point 0.50
Simple

Mutation
0.001 24 or 100 High fitness

Bueno Binary string Data of similar path Single point 0.80
Simple

Mutation
0.03 Around 80 fi / favg

B. Using Simple Types of Genetic Operators

In spite of, there are many types of genetic operators and
overlooking of, genetic operators which can specialize for test-
data generation. Previous techniques concentrated only on
using simple types of genetic operators (crossover and
mutation) which sometimes destroy the input‟s data types (e.g.
a simple mutation can change a string into an unprintable
character).

C. Not Considered Some Data Types and Multiple

Procedures

A structure is a collection of one or more variables possibly
of different types grouped together under a single name for
convenient handling. A pointer is a variable that contains the
address of another variable actually it represents two variables:
pointer itself and the variable pointed at. The problem here is
how to solve the test-data generation problem using a GA in
the presence of pointers to structures. The main problem for the
search procedure using GA is to look for a suitable
representation or coding for the structures and to design some
recombination operation corresponding to the new
representation.

D. Manually Selecting the Set of Paths to Be Covered

Path selection is the use of heuristics to choose an
execution path that simplifies test-data generation. Although
path selection is not vital in most of previous test-data
generation techniques, it may still be the case that some
execution paths are better than others for satisfying a particular
test requirement. If static or dynamic analysis can provide clues
about which paths are best, it will not be difficult to bias a
genetic search algorithm toward solutions using those paths.

E. Randomly Selecting the Initial Population

All previous test-data generation techniques select the
initial population randomly. These techniques can be improved
by basing the initial population on a partial solution (e.g. a set
of functional tests) rather than a random population, and use
the system to fill in the gaps which the functional tests have
missed. Also, the initial population can construct by a simple

technique. These improvements can drive the technique to
obtain the optimal solution quickly.

F. Using Solid Fitness Functions

When genetic search generates an input that fails to satisfy
a particular test requirement that it is currently trying to satisfy,
that input is simply given a low fitness value. However, there is
at least one input that reaches the test requirement because of
the way the algorithm is defined. If the technique assigns
higher fitnesses to inputs that are closer to satisfy the test
requirement, it might be possible to breed more inputs that
actually reach it.

1) Control Dependences Related Problems for Fitness

Functions
The fitness function that is used to optimize a test datum to

execute a certain target node, as described in [24], takes control
dependencies into account. This fitness function faces a
problem to find an input to traverse a target node within loops
[33]. This results in poor search performance. Jones et al. [21]
avoid this problem by unrolling the loop in the control flow
graph for the fitness evaluation only. The approach taken by
Baresel et al. [33] is add dependencies of one loop iteration to
the fitness function. Whilst monitoring the execution of the test
object, one can observe this information on all iterations and
calculate fitness from it. In order to circumvent this problem,
Tracey [25] examines the branch distance during each iteration
of the loop and uses the minimum branch distance obtained for
the purposes of computing the final fitness value. A further
problem is the assignment of approximation levels for some
classes of program with unstructured control flow. Baresel et
al. [33] present an example for this problem. Two plausible
solutions to this problem include optimistic and pessimistic
approximation level allocation strategies. In an optimistic
strategy, a control dependent branching node is allocated its
approximation level on the basis of the shortest control
dependent path from itself to the target node. In a pessimistic
strategy, a branching node is allocated its approximation level
on the basis of the longest control dependent path to the target
node. Both optimistic and pessimistic schemes were put to the
test in initial experiments by Baresel et al. [33]. Whilst they
show that the different schemes have different effects on the
progress of the search, they were unable to conclude from the

experiments which strategy works best in general. Thus, this
problem is still open to question.

2) Branch-Distance-Related Problems for Fitness

Functions
Although global search techniques are more robust than

local searches in fitness function landscapes containing local
optima and plateaus, they will still struggle in hostile search
landscapes containing large plateaus or several local optima. In
particular, plateaus can be induced on the search space through
the use of “flag” variables in branch predicates. When flag
variables are involved in branch predicates, the resulting fitness
function landscape consists of two plateaus - one for the true
value and one for the false value. In such situations, the
evolutionary search performs no better than a random search.
Bottaci [34] proposes a solution for a special case of flag
problems, where the value of the flag is determined by a
predicate. In this work it is suggested that the predicate used
for the distance calculation is substituted by the predicate used
in assigning the flag value, which provides more guidance to
the required test data. However, flags are more commonly
assigned constant true or false values. Harman et al. [35]
suggest the use of a program transformation to remove flag
variables from branch predicates, replacing them with the
expression that led to their determination. In the transformed
version of the program, the branch predicate is flag-free, and
consequently plateaux induced by the flag are also removed.
Note that although the flag is removed from the branch
predicate, it otherwise remains present in the program, in case
it has a future purpose in a later statement. A disadvantage of
the approach is that it can not yet transform programs where
flags are involved in loops. The approach of Baresel and
Sthamer [36] is to identify a sequence of nodes to be executed
prior to the branch predicate containing the flag. The sequence
of nodes to be executed is performed via data- flow analysis of
the flags involved.

A further problem can occur with nested branch predicates
[33]. Once input data is found for one or more of the
predicates, the chances of finding input data that also fits
subsequent predicates decreases. This is because a solution for
subsequent conditions must be found without violating any of
the earlier conditions. This leads to poor search performance.
Ideally, all of the conditions should be evaluated at once. Such
a situation could be established through the use of data
dependency analysis [33]. A similar problem occurs with the
use of short circuit evaluation of atomic conditions with branch
predicates using operators such as && and || in C. In such
situations the evaluation of the overall predicate breaks off
early if the end result has already been determined. Therefore,
during the process of searching for test data, the individual
conditions have to be attempted one after the other. Again, it
would be preferable to evaluate all of the conditions at once. In
this situation, care needs to be taken when side effects appear
in any of the conditions. A solution here might be to apply a
side-effect removal program transformation [37-38] first.
Alternatively, variables values could be saved into temporary
variables inserted immediately before the branching statement,
and restored after the side-effect if the condition would not
normally have been evaluated.

VI. CONCLUSIONS AND FUTURE WORK

The new features of GAs make the test-data generation
process easily and find the nearly global optimum. We have
described in section 6 some limitation of the test-data
generation techniques based on genetic algorithms such as they
concentrated only on: using control flow coverage, using
simple types of genetic operators, not considered test-data
generation in the presence of pointers, dynamic data structures,
and multiple procedures, manually selected the set of paths to
be covered, randomly selected the initial population, and using
solid fitness functions. Furthermore, there are other problems
as flag and enumeration variables and unstructured control
flow. Additional researches are required to overcome these
problems.

REFERENCES

[1] Frankl P G, Weiss S N. An experimental comparison of the effectiveness

of branch testing and data flow testing. IEEE Transactions on Software
Engineering, 19(8), 774-787, 1993.

[2] Mills H D, Dyer M D, Linger R C. Cleanroom Software Engineering.

IEEE Software 4(5), 19-25, September 1987.

[3] Voas J M, Morell L, Miller K W. Predicting where faults can hide from
testing. IEEE, 8(2), 41-48, March 1991.

[4] Thévenod-Fosse P, Waeselynck H. STATEMATE: Applied to Statistical
Software Testing. ACM SIGSOFT. Proceedings of the 1993

International Symposium on Software Testing and Analysis, Software
Engineering Notes 23(2), pp. 78-81, June 1993.

[5] Boyer R S, Elspas B, Levitt K N. SELECT - a formal system for testing

and debugging programs by symbolic execution. Proceedings of the
International Conference on Reliable software, 234-245 (1975).

[6] Clarke L A. A system to generate test data and symbolically execute

programs. IEEE Transactions on Software Engineering, 2(3), 215-222,
1976.

[7] King J C. Symbolic execution and program testing. Communications of

the ACM, 19 (7), 385-394, 1976.

[8] Howden W E. Symbolic testing and the DISSECT Symbolic evaluation
system. IEEE Transactions on Software Engineering, 3(4), 266-278,

1977.

[9] Hedley D, Hennell M A. The causes and effects of infeasible paths in
computer programs. Proceedings of Eighth International Conference on

Software Engineering, IEEE Computer Society, 259-266, 1985.

[10] Lindquist T E, Jenkins J R. Test-case generation with IOGen. IEEE

Software, 5 (1), 72-79 (1988).

[11] Girgis M R. An experimental evaluation of a symbolic execution
system. Software. Engineering Journal, 7(4), 285-290, 1992.

[12] Girgis M R. Using symbolic execution and data flow criteria to aid test

data selection. The Journal of Software Testing, Verification and
Reliability, 3(2), 101-112, 1993.

[13] Korel B. Automated Software Test Data Generation. IEEE Transactions

on Software Engineering, 16(8): 870-879, August 1990.

[14] Ferguson R, Korel B. The Chaining Approach for Software Test Data
Generation. ACM TOSEM, vol. 5, no. 1, pages 63-86, January 1996.

[15] McMinn P. Search-based Software Test Data Generation: A Survey.

Journal of Software Testing Verification and Reliability, vol.14, no.2,
pp.105-156, June 2004.

[16] Mantere T, Alander J T. Evolutionary Software Engineering, A Review.
Journal of Applied Soft Computing, vol.5, pp.315-331, 2005.

[17] Xanthakis S, Ellis C, Skourlas C, Le Gall A, Kastiskas S, Karapoulios

K. Application of genetic algorithms to software testing (Application des
algorithms génétiques au test des logiciels). In 5th International

Conference on Software Engineering and its Applications, pages 625-
636, Toulouse, France, 1992.

[18] Pei M,. Goodman E D, Gao Z, Zhong K. Automated Software Test Data

Generation Using A Genetic Algorithm. Technical Report GARAGe of
Michigan State University June 1994.

[19] Watkins A. A tool for the automatic generation of test data using genetic
algorithms. In Proceedings of the fourth Software Quality Conference,

Dundee, Great Britain, pp. 300-309, 1995.

[20] Roper M, Maclean I, Brooks A, Miller J, Wood M. Genetic Algorithms
and the Automatic Generation of Test Data. Technical report

RR/95/195[EFoCS-19-95], Department of Computer Science, University
of Strathclyde, 1995.

[21] Jones B F, Sthamer H H, Eyres D E. Automatic Structural Testing Using

Genetic Algorithms. Software Engineering Research Journal, pp. 299-
306, September 1996.

[22] Sthamer H. H., the automatic generation of software test data using

genetic algorithms, Ph.D. Thesis, University of Glamorgan, Pontyprid,
Wales, Great Britain, 1996.

[23] Weichselbaum R., software test automation by means of genetic

algorithms, Proceedings of the Sixth International conference on
Software testing, Analysis and review (EuroSTAR 98), Munich

Germany (1998).

[24] Pargas R P, Harrold M J, Peck R R. Test Data Generation Using Genetic
Algorithms. Journal of Software Testing, Verifications, and Reliability,

vol. 9, pp. 263-282, September 1999.

[25] Tracey N., A Search-Based Automated Test Data Generation

Framework for Safety Critical Software. Ph. D. thesis, University of
York, 2000.

[26] Bueno P M S, Jino M. Identification of Potentially Infeasible Program

Paths by Monitoring the Search for Test Data. Proceedings of the
Fifteenth IEEE International Conference on Automated Software

Engineering (ASE'00).

[27] Bueno P M S, Jino M. Automatic Test Data Generation for Program
Paths Using Genetic Algorithms. International Journal of Software

Engineering and Knowledge Engineering, vol. 12, no. 6, pp. 691-709,
2002.

[28] Wegener J., Baresel A., Sthamer H.. Evolutionary test environment for

automatic structural testing. Journal of Information and Software
Technology, vol. 43, pp. 841-854, 2001.

[29] J. Wegener, K. Buhr, and Pohlheim H.. Automatic test data generation

for structural testing of embedded software systems by evolutionary
testing. Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2002), pp. 1233-1240, New York, UAS, 2002.

[30] Lin J, Yeh P. Automatic Test Data Generation for Path Testing Using
GAs. Journal of Information Science vol. 131, pp. 47-64, 2001.

[31] Michael C C, McGraw G E, Schatz M A. Generating Software Test Data
by Evolution. IEEE Transactions on Software Engineering, vol.27,

no.12, pp. 1085-1110, December 2001.

[32] Berndt D, Fisher J, Johnson L , Pinglikar J, Watkins A. Breeding
Software Test Cases with Genetic Algorithms, Proceedings of 36th

Hawaii International Conference On System Sciences 2003.

[33] Baresel A, Sthamer H, Schmidt M. Fitness Function Design to Improve
Evolutionary Structural Testing. In proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 2002), pages 1329-
1336, New York, USA, 2002.

[34] Bottaci L. Instrumenting programs with flag variables for test data

search by genetic algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2002), pages 1337-

1342, New York, USA, 2002. Morgan Kaufmann.

[35] Harman M, Hu L, Hierons R, Baresel A, Sthamer H. Improving
evolutionary testing by flag removal. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 2002), pages 1359-
1366, New York, USA, 2002. Morgan Kaufmann.

[36] Baresel A, Sthamer H. Evolutionary testing of flag conditions. In

Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2003), Lecture Notes in Computer Science vol. 2724, pages

2442-2454, Chicago, USA, 2003. Springer-Verlag.

[37] Harman M, Hu L, Zhang X, and Munro M. Side-effect removal

transformation. In Proceedings of the 9th IEEE International Workshop

on Program Comprehension (IWPC2001), pages 310-319, Toronto,

Canada, 2001. IEEE Computer Society Press.

[38] Harman M, Hu L, Zhang X, Munro M, Dolado J J, Otero M C, Wegener

J. A post-placement side-effect removal algorithm. In Proceedings of the
18th IEEE International Conference on Software Maintenance (ICSM

2002), pp 2-11, Montreal, Canada, 2002.

[39] Baresel A, Pohlheim H, and Sadeghipour S. Structural and functional
sequence test of dynamic and state-based software with evolutionary

algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2003), Lecture Notes in Computer

Science vol. 2724, pages 2428 - 2441, Chicago, USA, 2003. Springer-
Verlag.

[40] McMinn P, Holcombe M. The state problem for evolutionary testing. In

Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2003), Lecture Notes in Computer Science vol. 2724, pages

2488-2497, Chicago, USA, 2003. Springer-Verlag.

